
DATABASE MANAGEMENT SYSTEMS
LABARATORY MANUAL

(20CS56)

B.Tech. (II Year I Sem.)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

LAKIREDDY BALI REDDY COLLEGE OF

ENGINEERING
(AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I) ISO 9001:2015 Certified Institution

Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada

L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230.

Vision of the Department

The Computer Science & Engineering aims at providing continuously stimulating educational

environment to its students for attaining their professional goals and meet the global challenges.

Mission of the Department

 DM1: To develop a strong theoretical and practical background across the computer

science discipline with an emphasis on problem solving.

 DM2: To inculcate professional behaviour with strong ethical values, leadership qualities,

innovative thinking and analytical abilities into the student.

 DM3: Expose the students to cutting edge technologies which enhance their employability

and knowledge.

 DM4: Facilitate the faculty to keep track of latest developments in their research areas and

encourage the faculty to foster the healthy interaction with industry.

Program Educational Objectives (PEOs)

 PEO1: Pursue higher education, entrepreneurship and research to compete at global level.

 PEO2: Design and develop products innovatively in computer science and engineering and in

other allied fields.

 PEO3: Function effectively as individuals and as members of a team in the conduct of

interdisciplinary projects; and even at all the levels with ethics and necessary attitude.

 PEO4: Serve ever-changing needs of society with a pragmatic perception.

PROGRAMME OUTCOMES (POs):

PO 1

Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex

engineering problems.

PO 2

Problem analysis: Identify, formulate, review research literature, and analyze

complex engineering problems reaching substantiated conclusions using first

principles of mathematics, natural sciences, and engineering sciences.

PO 3

Design/development of solutions: Design solutions for complex engineering

problems and design system components or processes that meet the specified needs

with appropriate consideration for the public health and safety, and the cultural,

societal, and environmental considerations.

PO 4

Conduct investigations of complex problems: Use research-based knowledge and

research methods including design of experiments, analysis and interpretation of data,

and synthesis of the information to provide valid conclusions.

PO 5

Modern tool usage: Create, select, and apply appropriate techniques, resources, and

modern engineering and IT tools including prediction and modeling to complex

engineering activities with an understanding of the limitations.

PO 6

The engineer and society: Apply reasoning informed by the contextual knowledge to

assess societal, health, safety, legal and cultural issues and the consequent

responsibilities relevant to the professional engineering practice.

PO 7
Environment and sustainability: Understand the impact of the professional

engineering solutions in societal and environmental contexts, and demonstrate the

knowledge of, and need for sustainable development.

PO 8
Ethics: Apply ethical principles and commit to professional ethics and responsibilities

and norms of the engineering practice.

PO 9
Individual and team work: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings.

PO 10

Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend

and write effective reports and design documentation, make effective presentations,

and give and receive clear instructions.

PO 11

Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a

member and leader in a team, to manage projects and in multidisciplinary

environments.

PO 12

Life-long learning: Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological

change

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO

1

The ability to apply Software Engineering practices and strategies in software project

development using open-source programming environment for the success of

organization.

PSO

2

The ability to design and develop computer programs in networking, web applications

and IoT as per the society needs.

PSO

3
To inculcate an ability to analyze, design and implement database applications.

Pre-requisite : Programming language, Discrete Mathematical Structures, and Data Structures.

Course Educational Objective: The objective of this lab is to provide a strong formal foundation

in database concepts, technology, and practice to the participants to groom them into well-

informed database application developers.

Course Outcomes (CO): At the end of this course, the student will be able to:

CO1: Create & manipulate the relational database using SQL.(Apply- L3)

CO2: Implement Views, procedures, triggers, and cursors on relational database. (Apply- L3)

CO3: Create Unstructured Databases using MongoDB.(Apply- L3)

CO 4: Improve individual / teamwork skills, communication & report writing skills with ethical

values.

Introduction: Language basics and example queries (one or two weeks).

1) Create a table STUDENT with appropriate data types and perform the following queries.

Attributes are Roll number, student name, date of birth, branch and year of study.

 a) Insert 5 to 10 rows in a table?

 b) List all the students of all branches

c) List student names whose name starts with ‘s‘.

d) List student names whose name contains ‘s as third literal.

e) List student names whose contains two ‘s‘ anywhere in the name

f) List students whose branch is NULL.

g) List students of CSE & ECE who born after 1980.

h) List all students in reverse order of their names.

 i) Delete students of any branch whose name starts with ‘s‘.

 j) Update the branch of CSE students to ECE. k) Display student name padded with

 *‘after the name of all the students.

2) Create the following tables based on the above Schema Diagram with appropriate data

 Types and constraints and perform the following queries.

SAILORS (Saild, Salname, Rating, Age)

RESERVES (Sailid, boatid, Day)

BOATS (Boatid, Boat-name, Color)

a) Insert 5 to 10 rows in all tables?

b) Find the name of sailors who reserved boat number 3.

c) Find the name of sailors who reserved green boat.

d) Find the colors of boats reserved by Ramesh.

e) Find the names of sailors who have reserved at least one boat.

f) Find the allsailid of sailors who have a rating of 10 or have reserved boated 104.

g) Find the Sailid‘s of sailors with age over 20 who have not registered a red boat.

h) Find the names of sailors who have reserved a red or green boat.

i) Find sailors whose rating is better than some sailor called Salvador.

j) Find the names of sailors who are older than the oldest sailor with a rating of 10

3) Schema Diagram for the rest of the SQL and PLSQL Programs.

 Create the following tables based on the above Schema Diagram with appropriate data types

 and constraints.

EMPLOYEE (Fname, Mname, Lname, SSN, Bdate, Address, Gender, Salary,

 SuperSSN,Dno)

DEPARTMENT (Dnumber, Dname, MgrSSN, Mgrstartdate)

DEPENDENT (ESSN, Dependent_Name, Gender, Bdate, Relationship)

a) Insert 5 to 10 rows into all the tables.

b) Display all employees’ names along with their department names.

c) Display all employees’ names along with their dependent details.

d) Display name and address of all employees who work for Research department.

e) List the names of all employees with two or more dependents.

f) List the names of employee who have no dependents.

g) List the names of employees who have at least one dependent.

h) List the names of the employees along with names of their supervisors using aliases.

i) Display name of the department and name of manager for all the departments.

j) Display the name of each employee who has a dependent with the same first name and

 gender as the employee.

4) Create the following tables based on the above Schema Diagram with appropriate data

 Types and constraints in addition to the tables in Experiment 2.

DEPT_LOCATIONS (Dnumber, Dloaction)

PROJECT (Pname, Pnumber, Plocation, Dnum)

WORKS_ON (ESSN, Pno, Hours)

a) Insert 5 to 10 rows into all the tables.

b) Find the names of the employees who work on all the projects controlled by the

 department Research.

c) List the project number, name and no. Of employees who work on that project for all

 the projects.

d) List the names of all the projects controlled by the departments department wise.

e) Retrieve the names of employees who work on all projects that John works on.

f) List the project numbers for projects that involve an employee either as worker or as

 a manager of the department that controls the project.

g) List the names of all employees in one department who work more than 10 hours on

 one specific project.

h) For each project, list the project name and total hours (by all employees) spent on

 that project.

i) Retrieve the names of all employees who work on every project.

j) Retrieve the names of all employees who do not work on any project.

5) Create a view that has project name, controlling department name, number of employees and

total hours worked on the project for each project with more than one employee working on it.

 a) List the projects that are controlled by one department from this view.

b) List the managers of the controlling departments for all the projects.

c) Demonstrate one update operation on this view.

d) List the Location of the controlling departments for all the projects.

e) Retrieve the data from the view.

6) Create a view emp from employee such that it contains only emp_noemp_name and

 department.

7) Create a view dept from department with only dept_no and location.

 8) Create a view that contains the details of employees who are managers only.

 9) Write a procedure to check whether the given number is Armstrong or not.

10) Write a procedure which accept the account number of a customer and retrieve the balance.

11) Write a procedure which accepts the student number and displays the department in which he

 belongs to.

12) Create a cursor to modify the salary of all employees belonging to 'Research' department by

 150%.

13) Consider the college database. Retrieve all students who have registered for a specific course

 and store their details into another table using Cursors.

14) Write an update trigger on Account table. The system should keep track of the records that are

 being updated.

15) Create NoSQL database for a sample application and perform CURD operations.

Design Database for any one of the following Case Studies

Case Study1 : Hospital Management System

Case Study2 : Railway Reservation

Case Study3 : Painting Hire Business

1) Create a table STUDENT with appropriate data types and perform
thefollowingqueries.

Attributes are Roll number, student name, date of birth,

branch,andyearofstudy.

mysql> create table student(Roll_number int

primarykey,student_namevarchar(20),date_of_birthdate,branch

varchar(5),year_of_study int);

a) Insert 5 to10rowsinatable?

mysql>insert into student(Roll_number,student_name,

date_of_birth,branch,yer_of_stdy)values(222,"venkat","

1991-09-26","cse",2020),

(333,'siva','1990-04-10','AIDS',2021),

(111,"srikanth","1990-03-16","cse",2020),

(444,'Rajani','1980-05-12','IT',2010),

(555,'Sindhu','1993-03-26','ECE',2017),

(666,'Nayana','1995-05-05','AIML',2002);

mysql>select *from student;

+ + + + + +

|Roll_number|student_name|date_of_birth|branch|year_of_study|

+ + + + + +

| 111|srikanth |1990-03-16 |cse | 2020|

| 222|venkat |1991-09-26 | cse | 2020|

| 333|siva |1990-04-10 |AIDS | 2021|

| 444|Rajani |1980-05-12 | IT |2010 |

| 555|Sindhu |1993-03-26 |ECE |2017 |

| 666|Nayana |1995-05-05 |AIML |2002 |

+ + + + + +

b)List all the students of all branches

mysql>select student_name from student;

+ +
|student_name|

+ +

|srikanth |

|venkat |

| siva |
|Rajani |

|Sindhu |

|Nayana |

+ +

6 rows inserted(0.00sec)

C)list all student names start with 's'

mysql>select student_name from student where student_name

like's%';

 +
|student_name|

+ +

|srikanth |

| siva |

|Sindhu |
+ +

3 rowsinset(0.00sec)

d)List student names whose name contains 's' as the third literal

mysql>select * from student where student_name like 's%';

Emptyset(0.00sec)

e)liststudentnameswhosecontainstwo's'anywhere

mysql> select student_name from student where student_name

like '%s%s%';

Emptyset(0.00sec)

f)list of students whose branch is null

mysql>insert into student (Roll_number,student_name,

date_of_birth,branch,year_of_study)values

 (777,'nandana','2003-04-28',null,2020);

mysql>select *from student;

+ + + + + +

|Roll_number|student_name|date_of_birth|branch|year_of_study|

+ + + + + +

| 111|srikanth |1990-03-16 |cse | 2020|

| 222|venkat |1991-09-26 |cse | 2020|

| 333|siva |1990-04-10 |AIDS | 2021|

| 444|Rajani |1980-05-12 | IT | 2010|

| 555|Sindhu |1993-03-26 |ECE | 2017|

| 666|Nayana |1995-05-05 |AIML | 2002|

| 777|nandana |2003-04-28 |NULL | 2020|

+ + + + + +

7 rows in set (0.01 sec)

mysql>select *from student where branch isnull;

+ + + + + +

|Roll_number|student_name|date_of_birth|branch|year_of_study|

+ + + + + +

| 777 |nandana |2003-04-28 | NULL | 2020|

+ + + + + +

1 rowinset(0.00sec)

g)List students of CSE & ECE who born after 1980.

mysql>select * from student where branch in('cse','ECE')and

date_of_birth>1980;

+ + + + + +

|Roll_number|student_name|date_of_birth|branch|year_of_study|

+ + + + + +

| 111|srikanth |1990-03-16 |cse | 2020|

| 222|venkat |1991-09-26 |cse | 2020|

| 555|Sindhu |1993-03-26 |ECE | 2017|

+ + + + + +

3rowsinset,1warning(0.00sec)

h)List all students in reverse order of their names

mysql>select reverse(student_name)from student;

i) Delete students of any branch whose name starts with ‘s‘.

mysql> delete from student where student_name like "s%";

 QueryOK,3rowsaffected(0.06sec)

mysql>select*from student;

+ + + + + +

|Roll_number|student_name|date_of_birth|branch|year_of_study|

+ + + + + +

| 222|venkat |1991-09-26 |cse | 2020|

| 444|Rajani |1980-05-12 | IT | 2010|

| 666|Nayana |1995-05-05 |AIML | 2002|

| 777|nandana |2003-04-28 |NULL | 2020|

+ + + + + +

4 rowsinset(0.00sec)

To disable auto commit use

mysql>set autocommit=false;

QueryOK,0rowsaffected(0.03sec)

i)update the branch of cse students to ece

mysql>update student set branch='ece' where branch='cse';

Query OK, 1 row affected (0.00 sec)Rows matched: 1

Changed: 1 Warnings: 0

mysql>select*from student;

+ + + + + +

|Roll_number|student_name|date_of_birth|branch|year_of_study|

+ + + + + +

| 222|venkat |1991-09-26 |ece | 2020|

| 444|Rajani |1980-05-12 |IT | 2010|

| 666|Nayana |1995-05-05 |AIML | 2002|

| 777|nandana |2003-04-28 |NULL | 2020|

+ + + + + +

4 rowsinset(0.00sec)

To create a savepoint we need to start the transtaction

first.mysql>starttransaction;

Query OK, 0 rows

affected

transaction-1

transaction-2

transaction-3

transaction-4

transaction-5

savepointA;

transaction-6

transaction-7

transaction-8

ifwerollbacktoA;

thentransaction-6,7,8areremoved.

j)display student name padded with * after the name of all the

students.

mysql>selectRPAD(student_name,30,"*") as Name fromstudent;

+ +

| Name |
+ +
|venkat************************|

|Rajani************************|

|Nayana************************|

|nandana***********************|

+ +

4 rowsinset(0.00sec)

2) Create the following tables with appropriate data types and
constraints and perform the following queries.

SAILORS(Saild,Salname,Rating,Age)

RESERVES (Sailid, boatid, Day)

BOATS(Boatid,Boat-name,Color)

TABLE CREATION:-

mysql>create table sailors(Sailid int primary key, Salname

varchar(20),Ratingint,Ageint);

mysql>create table boats (Boatid int primary key,Boat_name

varchar(20),colorvarchar(10));

mysql>create table reserves(Sailid int, Boatid int, day

date, foreign key(Sailid)references sailors(Sailid),

foreign key(Boatid) references boats(Boatid));

mysql>show tables;

+ +

|Tables_in_20761A0589|

+ +

| boats |

|reserves |
|sailors |

+ +

3 rows in set (0.01 sec)

mysql>desc reserves;

+ + + + + + +

| Field |Type|Null|Key|Default|Extra|

+ + + + + + +

| Sailid|int |YES |MUL|NULL | |

| Boatid|int |YES |MUL|NULL | |

| day |date|YES | |NULL | |

+ + + + + + +

rowsinset(0.00sec)

mysql>desc sailors;

+ + + + + + +

| Field |Type |Null|Key|Default|Extra|

+ + + + + + +

|Sailid |int | NO |PRI|NULL | |

|Salname|varchar(20)|YES | | NULL | |

|Rating |int |YES | |NULL | |

| Age |int |YES | | NULL | |

+ + + + + + +

rowsinset(0.00sec)

mysql>desc boats;

+ + + + + + +

| Field |Type |Null|Key|Default|Extra|

+ + + + + + +

|Boatid |int | NO |PRI|NULL | |

|Boat_name|varchar(20)|YES | |NULL | |

| color |varchar(10)|YES | |NULL | |

+ + + + + + +

3 rows in set (0.00 sec)INSERTING DATA:-

mysql> insert into sailors

(Sailid,Salname,Rating,Age)values(22,'Dustin',7,45),(29,'Brutu

s',1,33),(31,'Lubber',8,55),

(32,'Andy',8,25),(58,'Rusty',10,35),(64,'Horatio',7,35),

 (71,'Zobra',10,16), (74,'Horatio',9,35),

(85,'Art',3,25),(95,'Bob',3,63.5);

mysql>insert into boats(Boatid,Boat_name,color)

values(101,'Interlake','Blue'),(102,'Interlake','Red'),(103,'Cl

ipper','Green'),(104,'Marine','Red');

mysql>insert into reserves(Sailid,Boatid,Day)

values(22,101,'1998-10-10'),(22,102,'1998-08-

13'),(22,103,'1984-05-24'), (22,104,'1990-06-

13'),(31,102,'1997-02-13'),(31,103,'1998-06-

11'),(31,104,'1998-12-11'),(64,101,'1998-05-

09'),(64,102,'1998-07-09'),(74,103,'1998-07-09');

a)Find the name of sailors who reserved boat number 3.

mysql> select s.Salname from sailors s,reserves r where

s.Sailid=r.Sailidandr.Boatid=3;

 mysql>show tables;

+ +

|Tables_in_20761A0589|

+ +
| boats |

|reserves |

|sailors |

+ +

mysql>select * from boats;

+ + + +

|Boatid|Boat_name |color|

+ + + +

| 101 |Interlake|Blue |

| 102 |Interlake|Red |
| 103 |Clipper |Green|

| 104 |Marine |Red |
+ + + +

 mysql>select *from reserves;

| Sailid|Boatid|day |

+ + + +

22	101	1998-10-10
22	102	1998-08-13
22	103	1984-05-24

22	104	1990-06-13
31	102	1997-02-13
31	103	1998-06-11
31	104	1998-12-11

64	101	1998-05-09
64	102	1998-07-09
74	103	1998-07-09

+ + + +

mysql>select*fromsailors;

+ + + + +

|Sailid|Salname| Rating|Age |

+ + + + +

|22 |Dustin |7 | 45 |

29	Brutus	1	33
31	Lubber	8	55
32	Andy	8	25
58	Rusty	10	35

64	Horatio	7	35
71	Zobra	10	16
74	Horatio	9	35
85	Art	3	25

|95 |Bob | 3 | 64 |
+ + + + +

 mysql> select s.Salname from sailors s, reserves r where

 s.Sailid =r.Sailidandr.Boatid=103;

+ +
|Salname|

+ +

|Dustin |
|Lubber |
|Horatio|

+ +

3 rowsinset(0.00sec)

b)Find the name of sailors who reserved green boat.

mysql>select s.Salname from sailors s, reserves r, boats b

where s.Sailid=r.Sailid and r.Boatid=b.Boatid and

b.color='Green';

+ +
|Salname|

+ +
|Dustin |
|Lubber |
|Horatio|

+ +
rowsinset(0.00sec)

c)Find the color of boats reserved by Dustin

 mysql> select color from boats inner join reserves on

reserves.Boatid =boats.Boatid innerjoin sailors on

sailors.Sailid=reserves.Sailid where Salname='Dustin';

+ +

| color|

+ +

| Blue |

| Red |

| Green|

| Red |

+ +

d) Find the names of the sailors who have reserved atleast one

boat.

mysql>select s.Salname from sailors s,reserves r where

s.Sailid=r.Sailid;

+ +

|Salname|

+ +
|Dustin |

|Dustin |
|Dustin |

|Dustin |
|Lubber |

|Lubber |
|Lubber |
|Horatio|

|Horatio|

|Horatio|

+ +
10rowsinset(0.00 sec)

e) Find the all sailid of sailors who have a rating of 10 or have

 reserved boate 104.

mysql>select Salname from sailors innerjoin reserves on

sailors.Sailid=reserves.Sailid where Rating=10 o

rBoatid=104;

+ +
|Salname|

+ +
|Dustin |
|Lubber |
+ +

2 rowsinset(0.00sec)

f)Find the Sailid‘s of sailors with age over 20 who have not

 registereda redboat.

mysql> select distinct s.Sailid from sailors s,boats

b,reserves r where s.Sailid = r.Sailid and r.Boatid =

b.Boatid and s.Age> 20 and b.color !='Red';

+ +

|Sailid|

+ +

| 22|

| 64|

| 31|

| 74|

+ +

g)Find the names of sailors who have reserved a red or green

boat.

mysql> select s.Salname from sailors s, boats b, reserves r

where s.Sailid = r.Sailid and r.Boatid = b.Boatid and

(b.color = 'Red' orb.color='Green');

+ +
|Salname|

+ +

|Dustin |

|Lubber |

|Horatio|

|Dustin |

|Lubber |

|Horatio|

|Dustin |

|Lubber |

7 rowsinset(0.00sec)

h)Find sailors whose rating is better than some sailor called

Salvador.

mysql> select Salname from sailors where Rating > (select

Rating from sailors where Salname='Dustin');

+ +

|Salname|

+ +

|Lubber |
| Andy |

| Rusty |

| Zobra |
|Horatio|

+ +

4 rowsinset(0.00sec)

i)Find the names of sailors who are older than the oldest sailor

with aratingof10.

mysql>select Salname from sailors where Age>(select max(Age)from

sailors where Rating=10);

+ +

|Salname|

+ +

|Dustin |

|Lubber |

| Bob |

+ +

3) Schema Diagram for the rest of the SQL and PLSQL Programs.Create
the following tables based on the above Schema Diagram

withappropriatedatatypesandconstraints.

EMPLOYEE (Fname, Mname, Lname, SSN, Bdate, Address, Gender,

Salary,SuperSSN,Dno)

DEPARTMENT(Dnumber,Dname,MgrSSN,Mgrstartdate)

DEPENDENT (ESSN, Dependent_Name, Gender, Bdate, Relationship)

TABLECREATION:-

DEPARTMENT TABLE:-

CREATE TABLE DEPARTMENT (DNO VARCHAR(20) PRIMARY KEY, DNAME

VARCHAR(20),MGRSTARTDATE DATE);

EMPLOYEETABLE:

CREATE TABLE EMPLOYEE (FNAME VARCHAR(20), MNAME VARCHAR(20),

LNAME VARCHAR(20), SSN VARCHAR (20) PRIMARY KEY, DOB DATE,

ADDRESS VARCHAR(20),GENDER VARCHAR(10), SALARY INTEGER, SUPERSSN
VARCHAR(20)REFERENCES EMPLOYEE(SSN),DNO VARCHAR(20)REFERENCES

DEPARTMENT(DNO));

NOTE: Once DEPARTMENT and EMPLOYEE tables are created we must

alter department table to add foreign constraint MGRSSN using sql

command

ALTER TABLE DEPARTMENT ADD MGRSSN VARCHAR(20)REFERENCES

EMPLOYEE(SSN);

DEPENDENTTABLE:

CREATE TABLE DEPENDENT (ESSN VARCHAR(20) REFERENCES

EMPLOYEE(SSN),DEPENDENTNAME VARCHAR(20), GENDER VARCHAR(20), DOB

DATE, RELATIONSHIP VARCHAR(20));

DLOCATIONTABLE:

CREATE TABLE DLOCATION(DLOC VARCHAR(20),DNO VARCHAR(20)

REFERENCES DEPARTMENT(DNO),PRIMARY KEY(DNO,DLOC));

PROJECTTABLE:

CREATE TABLE PROJECT (PNAME VARCHAR(20),PNO INTEGER PRIMARY

KEY,PLOCATION VARCHAR(20),DNO VARCHAR(20)REFERENCES

DEPARTMENT(DNO));

WORKS_ONTABLE:

CREATE TABLE WORKS_ON(ESSN VARCHAR(20) REFERENCES

EMPLOYEE(SSN),PNO INTEGER REFERENCES PROJECT(PNO),PRIMARY

KEY(ESSN,PNO),HOURS INTEGER);

a)Insert 5 to 10 rows into all the tables.

INSERT DATA INTO EMPLOYEE:

INSERT INTO EMPLOYEE (FNAME , MNAME , LNAME , SSN , DOB ,

ADDRESS ,GENDER, SALARY , SUPERSSN , DNO)
VALUES('John','B','Smith','123456789','1965-02-

09','731Fondren','M',30000,'333445555',5),('Franklin','T','Wo

ng','333445555','1955-12-

08','638Voss','M',40000,'888665555',5),('Alicia','J','Zelaya'

,'999887777','1968-01-19','3321

Castle','F',25000,'987654321',4),('Jennifer','S','Wallance','9

87654321','1941-06-20','291Berry','F', 43000,'888665555',4),

('Ramesh','K','Narayana','666884444','1962-09-15','975

FireOak','M',38000,'333445555',5),('Joyce','A','English','453

453453','1972-07-31','5631Rice','F',25000,'333445555',5)

,('Ahmad','V','Jabbar','987987987','1969-03-22','980Dallas',

'M',25000,'987987987',4),('James','E','Brog','888665555','193

7-10-10','450Stone','M',55000,'NULL',1);

INSERTINTODEPARTMENT:

INSERT INTO DEPARTMENT (DNO, DNAME,MGRSTART DATE,MGRSSN)

VALUES('5','Research','1988-05-

22','333445555'),('4','Administration','1995-01-

01','987654321'),('1','Headquarters','1981-06-

19','888665555');

INSERTINTODEPENDENT:

INSERT INTO DEPENDENT (ESSN,DEPENDENTNAME,GENDER,DOB,

RELATIONSHIP)VALUES('333445555','Alice','F','1986-04-

05','Daughter'),('333445555','Theodore','M','1983-10-

25','Son'),('333445555','Joy','F','1958-05-

03','Spouse'),('987654321','Abner','M','1942-02-

28','Spouse'),('123456789','Michael','M','1988-01-

04','Son'),('123456789','Elizabeth','F','1967-05-05','Spouse');

INSERTINTODLOCATION:

INSERT INTO DLOCATION(DLOC,DNO)VALUES

('Houstan','1'),

('Stafford','4'),

('Bellaire','5'),

('Sugarland','5'),

('Houstan','5');

INSERTINTOPROJECT:

INSERT INTO PROJECT(PNAME,PNO, PLOCATION,DNO)VALUES

('ProductX',1,'Bellaire','5'),

('ProductY',2,'Sugarland','5'),

('ProductZ',3,'Houstan','5'),

('Computerization',10,'Stafford','4'),

('Reorganization',20,'Houstan','1'),

('Newbenefits',30,'Stafford','4');

INSERTINTOWORKS_ON:

INSERT INTO WORKS_ON(ESSN,PNO,HOURS)

VALUES('123456789',1,32),('123456789',2,47),

('666884444',3,40),

('453453453',1,20),

('333445555',2,20),

('333445555',1,10),

('333445555',3,10),

('333445555',10,10),

('999887777',20,10),

('999887777',30,30),

('987987987',10,10),

('987987987',11,35),

('987654321',30,5),

('987654321',31,20),

('888665555',20,15);

b) Display all employees’ names along with their department

names.

mysql> CREATE VIEW RESULTB AS (SELECT FNAME,LNAME,DNAME FROM

EMPLOYEE,DEPARTMENT WHERE EMPLOYEE.DNO=DEPARTMENT.DNO);

Query OK, 0 rows affected (0.06 sec)

mysql>SELECT * FROM RESULTB;

+ + + +

| FNAME |LNAME |DNAME |

+ + + +

| John |Smith |Research |

Franklin	Wong	Research
Joyce	English	Research
Ramesh	Narayana	Research

| James |Brog |Headquarters |

|Jennifer|Wallance|Administration|

| Ahmad |Jabbar |Administration|

|Alicia |Zelaya |Administration|

+ + + +

8 rowsinset(0.02sec)

c) Display all employees’ names along with their dependent

details

mysql> CREATE VIEW RESULTC AS (SELECT FNAME,LNAME,DEPENDENTNAME

FROM EMPLOYEE,DEPENDENT WHERE

DEPENDENT.ESSN=EMPLOYEE.SSN);

Query OK, 0 rows affected (0.05 sec)

mysql> SELECT* FROM RESULTC;

+ + + +

| FNAME |LNAME |DEPENDENTNAME|

+ + + +

|Franklin|Wong |Alice |

Franklin	Wong	Theodore
Franklin	Wong	Joy
Jennifer	Wallance	Abner

| John |Smith |Michael |

| John |Smith |Elizabeth |

+ + + +

6 rowsinset(0.00sec)

d) Display name and address of all employees who work for

Researchdepartment.

mysql> CREATE VIEW RESULTD AS (SELECT FNAME,LNAME,ADDRESS FROM

EMPLOYEE,DEPARTMENT WHERE EMPLOYEE.DNO=DEPARTMENT.DNO

ANDDNAME='RESEARCH');

Query OK, 0 rows affected (0.05 sec)mysql>SELECT*FROM RESULTD;

+ + + +

| FNAME |LNAME |ADDRESS |

+ + + +

| John |Smith |731Fondren |

|Franklin|Wong |638Voss |

| Joyce |English |5631Rice |
|Ramesh |Narayana|975FireOak|

+ + + +

4 rowsinset(0.00sec)

e)List the names of all employees with two or more dependents

mysql> CREATE VIEW RESULTE AS (SELECT FNAME,LNAME FROM EMPLOYEE

WHERE(SELECTCOUNT(*)FROM DEPENDENT WHERE SSN=ESSN)>=2);

Query OK, 0 rows affected (0.06 sec)

mysql>SELECT * FROM RESULTE;

+ + +

| FNAME |LNAME|

+ + +

| John |Smith|

|Franklin|Wong |
+ + +

2 rowsinset(0.00sec)

f)List the names of employee who have no dependents.

mysql> CREATE VIEW RESULTF AS (SELECT FNAME,LNAME FROM EMPLOYEE

WHERE NOTEXISTS(SELECT*FROM DEPENDENTWHERESSN=ESSN));

Query OK, 0 rows affected (0.06 sec)mysql>SELECT*FROM RESULTF;

+ + +

| FNAME |LNAME |

+ + +

| Joyce |English |

|Ramesh|Narayana|

| James |Brog |

| Ahmad |Jabbar |

|Alicia|Zelaya |
+ + +

5 rowsinset(0.01sec)

g)List the names of employees who have atleast one dependent.

mysql>CREATE VIEW RESULTG AS(SELECT FNAME,LNAME FROM EMPLOYEE

WHERE EXISTS (SELECT * FROM DEPENDENT WHERE SSN=ESSN) AND

EXISTS (SELECT * FROM DEPARTMENT WHERE SSN=MGRSSN));

Query OK, 0 rows affected (0.05 sec)

mysql>SELECT*FROM RESULTG;

+ + +

| FNAME |LNAME |

+ + +

|Franklin|Wong |
|Jennifer|Wallance|

+ + +

2 rowsinset(0.00sec)

h)List the names of the employees along with names of their

supervisorsusingaliases.

mysql> CREATE VIEW RESULTH AS (SELECT E1.FNAME,E1.LNAME,E2.FNAME

AS SUPERVISOR FROM EMPLOYEEE1,EMPLOYEEE2 WHERE

E2.SSN=E1.SUPERSSN);

Query OK, 0 rows affected (0.05 sec)

mysql>SELECT *FROM RESULTH;

+ + + +

| FNAME |LNAME |SUPERVISOR|

+ + + +

| John |Smith |Franklin |
|Franklin|Wong |James |

| Joyce |English |Franklin |
|Ramesh |Narayana|Franklin |

|Jennifer|Wallance|James |
| Ahmad |Jabbar |Ahmad |

|Alicia |Zelaya |Jennifer |
+ + + +

7 rowsinset(0.00sec)

i)Display name of the department and name of manager for all

thedepartments.

mysql> CREATE VIEW RESULTI AS (SELECT DNAME,FNAME FROM EMPLOYEE

E,DEPARTMENT D WHERE E.SSN=D.MGRSSN);

Query OK, 0 rows affected (0.05 sec)

mysql>SELECT*FROM RESULTI;

+ + +

| DNAME |FNAME |

+ + +

|Headquarters |James |

|Administration|Jennifer|

|Research |Franklin|
+ + +

rowsinset(0.00sec)

j)Display the name of each employee who has a dependent with the

samefirstnameandgenderastheemployee.

mysql> CREATE VIEW RESULTJ AS (SELECT E.FNAME,E.LNAME FROM

EMPLOYEE AS EWHERE E.SSN IN (SELECT ESSN FROM EMPLOYEE,DEPENDENT

WHERE FNAME=DEPENDENTNAME AND EMPLOYEE.GENDER=DEPENDENT.GENDER));

Query OK, 0 rows affected (0.05 sec)

mysql>SELECT *FROM RESULTJ;

Emptyset(0.00sec)

4) Create the following tables based on the above Schema Diagram
with appropriate data types and constraints in addition to the

tables in Experiment

DEPT_LOCATIONS(Dnumber,Dloaction)

PROJECT (Pname, Pnumber, Plocation,Dnum)

WORKS_ON(ESSN,Pno,Hours)

TABLE CREATION :-

DLOCATIONTABLE:

CREATE TABLE DLOCATION(DLOC VARCHAR(20),DNO VARCHAR(20)

REFERENCESDEPARTMENT(DNO),PRIMARYKEY(DNO,DLOC));

PROJECTTABLE:

CREATE TABLE PROJECT (PNAME VARCHAR(20),PNO INTEGER PRIMARY

KEY,PLOCATIONVARCHAR(20),DNOVARCHAR(20)REFERENCESDEPARTMENT(DNO))

;

WORKS_ONTABLE:

CREATE TABLE WORKS_ON(ESSN VARCHAR(20) REFERENCES

EMPLOYEE(SSN),PNOINTEGERREFERENCESPROJECT(PNO),PRIMARYKEY(ESSN,PN

O),HOURSINTEGER);

a)Insert 5 to 10 rows into all the tables.

INSERT INTO DLOCATION(DLOC,DNO)VALUES ('Houstan','1'),

('Stafford','4'), ('Bellaire','5'), ('Sugarland','5'),

('Houstan','5');

INSERT INTO PROJECT(PNAME,PNO,PLOCATION,DNO)VALUES

('ProductX',1,'Bellaire','5'), ('ProductY',2,'Sugarland','5'),

('ProductZ',3,'Houstan','5'),

('Computerization',10,'Stafford','4'),

('Reorganization',20,'Houstan','1'),('Newbenefits',30,'Stafford',

'4');

INSERT INTO WORKS_ON(ESSN,PNO,HOURS) VALUES('123456789',1,32),

('123456789',2,47),('666884444',3,40),('453453453',1,20),

('333445555',2,20), ('333445555',1,10), ('333445555',3,10),

('333445555',10,10), ('999887777',20,10), ('999887777',30,30),

('987987987',10,10), ('987987987',11,35), ('987654321',30,5),

('987654321',31,20), ('888665555',20,15);

a) Find the names of the employees who work on all the projects

 controlled by the department Research.

mysql> CREATE VIEW RESULT4B AS (SELECT DISTINCT E.FNAME,E.LNAME

FROMEMPLOYEE E,DEPARTMENT D, PROJECT P,WORKS_ON W WHERE

D.DNAME='RESEARCH'ANDD.DNO=P.DNOANDW.ESSN=E.SSNANDP.PNO=W.

PNO);

Query OK, 0 rows affected (0.05 sec)

mysql>SELECT *FROM RESULT4B;

+ + +

| FNAME |LNAME |

+ + +

| John |Smith |

|Franklin|Wong |
| Joyce |English |

|Ramesh |Narayana|

+ + +

rowsinset(0.00sec)

b)List the project number, name and no. Of employees who work on

 that project for all the projects.

mysql> CREATE VIEW RESULT4C AS (SELECT .PNO,P.PNAME,COUNT(W.ESSN)

FROM PROJECT P,WORKS_ON W WHERE P.PNO=W.PNO GROUPBY

P.PNO,P.PNAME);

Query OK, 0 rows affected (0.09 sec)

mysql>SELECT *FROM RESULT4C;

+ + + +

| PNO|PNAME |COUNT(W.ESSN)|

+ + + +

| 1|ProductX | 3|

| 2|ProductY | 2|

| 3|ProductZ | 2|

| 10|Computerization| 2|

| 20|Reorganization | 2|

| 30|Newbenefits | 2|

+ + + +

5 rowsinset(0.01sec)

c)List the names of all the projects controlled by the

 departments department wise.

mysql> CREATE VIEW RESULT4D AS (SELECT P.PNAME,D.DNAME FROM

 PROJECT P,DEPARTMENT D WHERE P.DNO=D.DNO);

Query OK, 0 rows affected (0.06 sec)

mysql>SELECT*FROM RESULT4D;

+ + +

| PNAME |DNAME |

+ + +

|ProductX |Research |

ProductY	Research
ProductZ	Research
Computerization	Administration

|Reorganization |Headquarters |

|Newbenefits |Administration|

+ + +

6 rowsinset(0.01sec)

d) Retrieve the names of employees who work on all projects that

 Johnworkson.

mysql> CREATE VIEW RESULT4E AS (SELECT DISTINCT E.FNAME,E.LNAME

FROM EMPLOYEE E,WORKS_ON W WHERE E.SSN=W.ESSN AND W.PNO IN

(SELECT W.PNO FROM EMPLOYEE E,WORKS_ON W WHERE

E.SSN=W.ESSN AND E.FNAME='JOHN'));

Query OK, 0 rows affected (0.10 sec)

mysql>SELECT *FROM RESULT4E;

+ + +

| FNAME |LNAME |

+ + +

| John |Smith |

|Franklin|Wong |
| Joyce |English |

+ + +

3 rowsinset(0.00sec)

e)List the project numbers for projects that involve an employee

 either as worker or as a manager of the department that controls

the project.

mysql> CREATE VIEW RESULT4F AS (SELECT DISTINCT P.PNO FROM

PROJECT P,DEPARTMENT D,EMPLOYEE E WHERE D.MGRSSN=E.SSN

AND D.DNO=P.DNO)UNION(SELECT DISTINCT P.PNO FROM EMPLOYEE

E,PROJECT P,WORKS_ON W WHEREE.SSN=W.ESSNANDP.PNO=W.PNO);

Query OK, 0 rows affected (0.10 sec)

mysql>SELECT *FROM RESULT4F;

+ +

|PNO|

+ +

| 20 |

| 10 |

| 30 |

| 1|

| 2 |

| 3 |

+ +

f)List the names of all employees in one department who work more

than 10 hours on one specific project.

mysql> CREATE VIEW RESULT4G AS (SELECT E.FNAME,E.LNAME FROM

EMPLOYEE E,PROJECT P,DEPARTMENT D,WORKS_ON W WHERE

D.DNO=E.DNO ANDD.DNAME='RESEARCH' AND D.DNO=P.DNO AND

P.PNAME='PRODUCTX' AND P.PNO=W.PNOANDW.ESSN=E.SSNAND

W.HOURS>10);

Query OK, 0 rows affected (0.11 sec)

mysql>SELECT *FROM RESULT4G;

+ + +

| FNAME|LNAME |

+ + +

| John |Smith |

|Joyce|English|

+ + +

2 rowsinset(0.00sec)

g)For each project, list the project name and total hours (by all

employees)spent on that project.

mysql> CREATE VIEW RESULT4H AS (SELECT P.PNAME,SUM(W.HOURS) FROM

 PROJECT P,WORKS_ON W WHERE P.PNO=W.PNO GROUPBY P.PNAME,P.PNO);

Query OK, 0 rows affected (0.04 sec)mysql>SELECT*FROM RESULT4H;

+ + +

| PNAME |SUM(W.HOURS)|

+ + +

|Computerization| 20 |

|Newbenefits | 35|

|ProductX | 62 |

|ProductY | 67 |

|ProductZ | 50 |

|Reorganization | 25 |

+ + +

7 rowsinset(0.00sec)

h)Retrieve the names of all employees who workon every project.

mysql> CREATE VIEW RESULT4I AS (SELECT E.FNAME FROM EMPLOYEE E

WHEREE.SSN IN (SELECT W.ESSN FROM WORKS_ON W WHERE

W.PNO=ALL(SELECT PNO FROM PROJECT)));

Query OK, 0 rows affected (0.06 sec)

mysql>SELECT*FROM RESULT4I;

Emptyset(0.00sec)

i)Retrieve the names of all employees who do not work on any

project.

mysql> CREATE VIEW RESULT4J AS (SELECT E.FNAME,E.LNAME FROM

EMPLOYEE E WHERE E.SSN NOTIN(SELECT W.ESSN FROM WORKS_ON

W));

Query OK, 0 rows affected (0.08 sec)

mysql>SELECT*FROM RESULT4J;

 Emptyset(0.01sec)

5) Create a view that has project name, controlling department
name,number of employees and total hours worked on the project

for each project with more than on employee working on it.

mysql> CREATE VIEW PROJECT_VIEW(PNAME,DNAME,NOOFEMP,NOOFHRS) AS

SELECT P.PNAME,D.DNAME,COUNT(W.ESSN),SUM(W.HOURS) FROM PROJECT

P,DEPARTMENT D,WORKS_ON W WHERE P.DNO=D.DNO AND P.PNO=W.PNO GROUP

BY W.PNO,P.PNAME,D.DNAME;

mysql>SELECT * FROM PROJECT_VIEW;

+ + + + +

| PNAME |DNAME |NOOFEMP|NOOFHRS|

+ + + + +

|ProductX |Research | 3 | 62|

|ProductY |Research | 2 | 67|

|ProductZ |Research | 2 | 50|

|Computerization|Administration| 2 | 20|

|Reorganization |Headquarters | 2 | 25|

|Newbenefits |Administration| 2 | 35|

+ + + + +

6 rowsinset(0.00sec)

a) List the projects that are controlled by one department from
this view.

mysql> CREATE VIEW RESULT5A AS (SELECT PNAME FROM PROJECT_VIEW

 WHERE DNAME='RESEARCH');

Query OK, 0 rows affected (0.09 sec)

mysql>SELECT * FROM RESULT5A;

+ +

| PNAME |

+ +

|ProductZ|

|ProductX|

|ProductY|

+ +

3 rowsinset(0.00sec)

b) List the managers of the controlling departments for all the
projects.

mysql> CREATE VIEW RESULT5B AS (SELECT E.FNAME, E.LNAME, P.DNAME,

P.PNAMEFROM EMPLOYEE E, PROJECT_VIEW P,DEPARTMENT D WHERE

E.SSN=D.MGRSSN ANDD.DNAME=P.DNAME);

Query OK, 0 rows affected (0.09 sec)

mysql>SELECT *FROM RESULT5B;

+ + + + +

| FNAME |LNAME |DNAME |PNAME |

+ + + + +

| James |Brog |Headquarters |Reorganization |

|Jennifer|Wallance|Administration|Newbenefits |

|Jennifer|Wallance|Administration|Computerization|

Franklin	Wong	Research	ProductY
Franklin	Wong	Research	ProductZ
Franklin	Wong	Research	ProductX

+ + + + +

6 rowsinset(0.00sec)

c) Demonstrateoneupdateoperationonthisview.

IF PARENT TABLE HAS ANY CONSTRAINTS VIEW TABLE IS NOT UPDATED;

d) List the Location of the controlling departments for all the
projects.

mysql> CREATE VIEW RESULT5D AS (SELECT P.PNAME,PV.DNAME,D.DLOC

FROM PROJECT_VIEW PV,DLOCATION D,PROJECT P WHERE

P.DNO=D.DNO ANDP.PNAME=PV.PNAME);

Query OK, 0 rows affected (0.09 sec)

mysql>SELECT * FROM RESULT5D;

+ + + +

| PNAME |DNAME | DLOC |

+ + + +

|ProductX |Research |Bellaire |
|ProductX |Research |Houstan |

|ProductX |Research |Sugarland|

|ProductY |Research |Bellaire |
|ProductY |Research |Houstan |

|ProductY |Research |Sugarland|

|ProductZ |Research |Bellaire |
|ProductZ |Research |Houstan |

|ProductZ |Research |Sugarland|
|Computerization|Administration|Stafford |

|Reorganization |Headquarters |Houstan |

|Newbenefits |Administration|Stafford |
+ + + +

e) Retrieve the data from the view.

mysql>SELECT*FROMPROJECT_VIEW;

+ + + + +

| PNAME |DNAME |NOOFEMP|NOOFHRS|

+ + + + +

|ProductX |Research | 3 | 62|

|ProductY |Research | 2 | 67|

|ProductZ |Research | 2 | 50|

|Computerization|Administration| 2 | 20|

|Reorganization |Headquarters | 2 | 25|

|Newbenefits |Administration| 2 | 35|

+ + + + +

6) Create a view emp from employee such that it contains only
emp_no emp_name and department.

mysql> CREATE VIEW EMP_VIEW AS (SELECT E.SSN,E.FNAME,

 E.LNAME,D.DNAME FROM EMPLOYEEE,DEPARTMENTD);

QueryOK,0rowsaffected(0.11sec)

mysql>SELECT*FROMEMP_VIEW;

+ + + + +

| SSN |FNAME |LNAME |DNAME |

+ + + + +

|999887777|Alicia|Zelaya|Research |

+ + + + +

24rowsinset(0.00sec)

| 123456789 | John | Smith | Headquarters |

| 123456789 | John | Smith | Administration |

| 123456789 | John | Smith | Research |

| 333445555 | Franklin | Wong | Headquarters |

| 333445555 | Franklin | Wong | Administration |

| 333445555 | Franklin | Wong | Research |

| 453453453 | Joyce | English | Headquarters |

| 453453453 | Joyce | English | Administration |

| 453453453 | Joyce | English | Research |

| 666884444 | Ramesh | Narayana | Headquarters |

| 666884444 | Ramesh | Narayana | Administration |

| 666884444 | Ramesh | Narayana | Research |

| 888665555 | James | Brog | Headquarters |

| 888665555 | James | Brog | Administration |

| 888665555 | James | Brog | Research |

| 987654321 | Jennifer | Wallance | Headquarters |

| 987654321 | Jennifer | Wallance | Administration |

| 987654321 | Jennifer | Wallance | Research |

| 987987987 | Ahmad | Jabbar | Headquarters |

| 987987987 | Ahmad | Jabbar | Administration |

| 987987987 | Ahmad | Jabbar | Research |

| 999887777 | Alicia | Zelaya | Headquarters |

| 999887777 | Alicia | Zelaya | Administration |

7) Create a view dept from department with only dept_no and
location.

mysql>CREATE VIEW DEPT_VIEW AS(SELECTDNO,DLOCFROMDLOCATION);

QueryOK,0rowsaffected(0.09sec)

mysql>SELECT*FROMDEPT_VIEW;

+ + +

| DNO|DLOC |

+ + +

|1 |Houstan |

|4 |Stafford |
|5 |Bellaire |

|5 |Houstan |

|5 |Sugarland|

+ + +

5 rowsinset(0.00sec)

8) Create a view that contains the details of employees who are
managersonly.

mysql> CREATE VIEW MANAGER AS (SELECT FNAME,LNAME FROM EMPLOYEE

 WHERESSN=SUPERSSN);

QueryOK,0rowsaffected(0.05sec)

mysql>SELECT *FROM MANAGER;

+ + +

| FNAME|LNAME |

+ + +

| Ahmad|Jabbar|

+ + +

1 rowinset(0.00sec)

9) Write a procedure to check whether the given number is Armstrong
or not.

mysql>delimiter//

mysql>create procedure arms(in n int)

->begin

->declaremint;

->declaresumint;

->declaretempint;

->declarelenint;

->settemp=n;

->setsum=0;

->setlen=char_length(n);

->whilen>0do

->setm=mod(n,10);

->setsum=sum+pow(m,len);

->setn=ndiv10;

->endwhile;

->selectif(sum=temp,'armstromg','notaarmstrong');

->end

-> //

mysql>delimiter ;

mysql>call arms(153);

+ +

|if(sum=temp,'armstromg','notaarmstrong')|

+ +

|armstromg |

+ +

1 rowinset(0.00sec)

QueryOK,0rowsaffected(0.00sec)

10) Write a procedure which accept the account number of a

 customer and retrieve the balance.

mysql> create table customer(acc int,name varchar(20),bal

 int);QueryOK,0rowsaffected(0.49sec)

mysql>insert into customer(acc,name,bal) values

 (1,'sagar',1050),(2,'ram',150),(3,'bhim',100),

 (4,'srk',105),(5,'sir',175);

Query OK, 5 rows affected (0.07 sec)Records:5 Duplicates:0

 Warnings:0

mysql>select *from customer;

+ + + +

| acc |name |bal |
+ + + +

| 1|sagar|1050|

| 2|ram | 150|

| 3|bhim | 100|

| 4|srk | 105|

| 5|sir | 175|

+ + + +

5 rowsinset(0.00sec)

mysql>delimiter//

mysql>create procedure tab(in ac int)

->begin

->select bal from customer where acc=ac;

->end

->//

Query OK,0rowsaffected(0.00sec)

mysql>delimiter ;

mysql>call tab(1);

+ +

| bal |

+ +

| 1050|

+ +

1 rowinset(0.00sec)

11) Write a procedure which accepts the student number and

 displays the department in which he belongs to.

mysql>delimiter//

mysql>create procedure stud(in a int)

->begin

->select branch from student where dept_no=a;

->end

->//

QueryOK,0rowsaffected(0.00sec)

mysql>delimiter ;mysql>callstud(4);

+ +

|branch|

+ +

| AIDS |

+ +

1 rowinset(0.00sec)

QueryOK,0rowsaffected(0.00sec)

12) Create a cursor to modify the salary of all employees

belonging to'Research'departmentby150%.

mysql>delimiter//

->create procedure emp_sal_update(in dept varchar(20))

->begin

->declare flag int default0;

->declare s int default0;

->declare update_cur cursor for select SALARY from EMPLOYEE,

DEPARTMENT where EMPLOYEE.DNO=DEPARTMENT.DNO and

DEPARTMENT.DNAME=dept;

->declare continue handler for notfound set flag=1;

->open update_cur;

->getRec:LOOP

->fetch update_cur into s;

->if flag=1 then

->LEAVE getRec;

->endif;

->update EMPLOYEE,DEPARTMENT set SALARY=SALARY+(s*150/100) where

 EMPLOYEE.DNO=DEPARTMENT.DNO and DEPARTMENT.DNAME=dept;

->END LOOP getRec;

->close update_cur;

->end

->//

mysql>delimiter;

13) Consider the college database. Retrieve all students who
haveregistered for a specific course and store their details

into another table using Cursors.

mysql>create table student(sno int primary key,sname varchar(20),

 dob date,course varchar(5),year int);

QueryOK,0rowsaffected(0.00sec)

mysql>insert into student(sno,sname,dob,course,year) values

 (222,"venu","1991-09-26","cse",2020),(333,'siva','1990-04-

 10','AIDS',2021),(111,"sagar","1990-03-16","cse",2020),

 (444,'Ramu','1980-05-12','IT',2010),(555,'niteesh','1993-

 03-26', 'ECE',2017),(666,'joel','1995-05-05','AIML',2002);

Query OK, 6 rows affected (0.00 sec)Records:6 Duplicates:0

 Warnings: 0

mysql>select * from student;

+ + + + + +

| sno|sname |dob |course| year|
+ + + + + +

| 111|sagar |1990-03-16|cse |2020|

| 222|venu |1991-09-26|cse |2020|

| 333|siva |1990-04-10|AIDS |2021|

| 444|Ramu |1980-05-12|IT | 2010|
| 555|niteesh|1993-03-26|ECE |2017|

| 666|joel |1995-05-05|AIML |2002|

+ + + + + +

6 rowsinset(0.00sec)

mysql> create table temp_student(stdnoint, stdname varchar(20),

 stdcourse varchar(20));

QueryOK,0rowsaffected(0.00sec)

mysql>delimiter//

mysql>create procedure getStudents(in x varchar(10))

->begin

->declare flag int default0;

->declare stdno int;

->declare stdname varchar(20);

->declare stdcourse varchar(10);

->declare get_cur cursor for select sno,sname,course from student

 where course=x;

->declare continue handler for notfound set flag=1;

->open get_cur;

->getRec:LOOP

->fetch get_cur into stdno,stdname,stdcourse;

->if flag=1 then

->LEAVE getRec;

->endif;

->insert intot emp_student values(stdno,stdname,stdcourse);

->ENDLOOP getRec;

->close get_cur;

->end

->//

mysql>delimiter;

mysql>call getStudents("cse");

Query OK, 0 rows affected, 1 warning (0.00 sec)mysql>select*from

temp_student;

+ + + +

|stdno|stdname|stdcourse|

+ + + +

| 111|sagar |cse |
| 222|venu | cse |

+ + + +

2 rowsinset(0.00sec)

14) Write an update trigger on Account table. The system should

keeptrackoftherecordsthatarebeingupdated.

mysql>delimiter//

->CREATE TRIGGER ACCUPDATE BEFORE UPDATE ON Account FOR EACHROW

->BEGIN

->DECLARE emsg varchar(250);

->SET emsg="NEW BALANCE CANNOT BE LESSTHAN OLD BALANCE";

->IF new.balance<old.balance THEN

->SIGNAL SQL STATE'45000'

->SET MESSAGE_TEXT=emsg;

->ENDIF;

->END

->//

mysql>delimiter ;

mysql>delimiter//

mysql>

15. Create NOSQL database for a Sample Application and Perform

CURD operations.

FOR CREATING DATABASE:

--

How and when to create database

If there is no existing database, the following command is used

to create a new database.

Syntax:

use DATABASE_NAME

If the database already exists, it will return the existing

database.

Let' take an example to demonstrate how a database is created in

MongoDB. In the following example, we are going to create a

database "database".

See this example

>use db

output:

Swithched to db database

To check the currently selected database, use the command db:

>db

output:

db

To check the database list, use the command show dbs:

>show dbs

output:

local 0.078GB

Here, your created database "db" is not present in the list,

insert at least one document into it to display database:

>db.movie.insert({"name":"database"})

Here movie is collection, automatically created

output:

WriteResult({ "Inserted": 1})

>show dbs

output:

db 0.078GB

local 0.078GB

INSERT OPERATIONS:

The insert operation is one of the crucial operations in the

database system. MongoDB supports the below mentioned three

methods to insert document data in your database:

 insert()

 insertOne()

 insertMany()

INSERT METHOD:

The insert() method is used to insert one or multiple documents

in a collection. The collection name is associated with the

insert() method and the parameters. The syntax to insert a single

document is

In the above syntax, the document will consist of { name:

"data_value" }. As it is a JSON document, these documents will

consist of the data as name-value pairs, surrounded by curly

braces, i.e. {}.

---->Syntax:

db.movie.insert({"name":"Avengers: Endgame"})

db.movie.find()

----->OUTPUT:

The _id which is provided by MongoDB is a 12-byte value of

ObjectId which is prepared from the following values:

 a 4-byte value denoting the seconds as Unix epoch,

 a 3-byte device identifier value,

 a 2-byte processing id,

 a 3 byte counter which is a random value.

Create multiple documents using insert method():

It is also possible for you to insert multiple document values in

a particular insert() method.

Let us take an example where you can insert multiple documents at

a time:

db.movie.insert(

[

{ name: "Avengers: Infinity War" },

{ name: "Avengers: Endgame" }

]

)

It is to be noted that the documents are supplied in the form of

an array. Document values are packed or enclosed in square

brackets [] and separated by commas.

Executing the above statements will pop up with messages

something like this:

OUTPUT:

EMBEDDED DOCUMENTS:

MongoDB also allow users to create document containing other

documents, arrays of values, as well as arrays of documents.

EXAMPLE:

db.writer.insert({

writername: "Stan Lee",

 comics: [

{ comics: "DC Comics", year: 2004, name: "Superman" },

{ project: "DC Comics", year: 2001, level: "Batman" },

{ project: "Marvel Comics", year: 1968, level: "Captain America"

}

]

})

OUTPUT:

THE INSERTONE() METHOD:

Another way to insert documents is by using the insertOne()

method for a single document in a collection:

EXAMPLE:

db.movie.insertOne({ _id: 2, writername: "Stan Lee", name:

"Aquaman" })

In this case, you have a particular non-existent collection of

data. In the case of the insert() method, a precise collection

will get produced in case it does not exist previously.

Here you will observe that the output appeared to be different in

format than that of insert() method:

OUTPUT:

INSERTMANY() METHOD:

As the name is explaining its working, is used for inserting

multiple documents:

EXAMPLE:

db.developers.insertMany(

[

{ _id: 20, devname: "John Wick", tools: "Visual Studio", born:

1948 },

{ _id: 21, devname: "Ganesh Roy", tools: "Net Beans", born: 1945

},

{ _id: 22, devname: "Deeksha Raul", tools: "Unity 3D", born: 1954

}

]

)

OUTPUT:

UPDATE OPERATION:

Use of update operation :

The update operation in a database is used to change or update

values in a document. MongoDB makes use of the update() method

for updating the documents within a MongoDB collection. For

updating any specific documents, a new criterion can be

incorporated with the update statement, which will only update

the selected documents.

You have to put some specific condition in the form of the

parameter to update the document in MongoDB. Here is a stepwise

representation of how this can be performed:

 Make use of the update() method.

 Prefer the circumstance that you wish to implement for

deciding which document needs an update in their

database. Let us assume an example where you want to

update your document which is having an id 4.

 Then make use of the set command for modifying the

Field Name.

 Select which Field Name you wish for modifying and go

into the new value consequently.

Syntax:

db.collection.update(

<query>,

<update>,

 {

upsert: <boolean>,

 multi: <boolean>,

writeConcern: <document>,

 collation: <document>,

arrayFilters: [<filterdocument1>, ...]

 }

)

Example :

db.musicians.find({ _id: 4 }).pretty()

Output:

So, now let us update the list of instrument played by this

person, by making use of the $set operator for updating a single

field.

Example:

db.musicians.update(

{_id: 4},

{

 $set: { instrument: ["Vocals", "Violin", "Octapad"] }

}

)

Output:

Characteristics of update of MongoDB:

 In case your field does not subsist in the current

document, the $set operator will insert a new field

with the specified value, until and unless it violates

the type constraint.

 MongoDB users can also make use of { multi: true } for

updating multiple documents which will meet the query

criteria.

 Making use of { upsert: true } for creating a new

document is also possible as no document goes with the

query.

Save() Method:

The save() method is used to replace a document with another

document conceded in the form of a parameter.

In other words, it can be said that the save() is a blend of both

update() as well as insert(). As the save() method is used, the

document that exists will get updated. Otherwise, when it does

not exist, it will create one. When an _id field is not

specified, MongoDB automatically creates a document with this _id

containing an ObjectId value (as conducted by the insert()

method).

Example:

db.musicians.save({

 "_id": 4,

 "name": "Steven Morse",

 "instrument": "Violin",

 "born": 1954

})

Output:

DELETING DOCUMENTS IN MONGODB:

MongoDB allows you to delete a document or documents collectively

using its one of the three methods. Three methods provided by

MongoDB for deleting documents are:

 db.collection.deleteOne()

 db.collection.remove()

 db.collection.deleteMany()

db.collection.deleteOne() Method:

This method is used to delete only a single document, even when

more than one document matches with the criteria. Here is an

example of using this db.collection.deleteOne() method for

deleting the single document. To perform this process here, we

have created a database and saved all the data separately.

Example:

db.programmers.find()

Output:

Example:

db.programmers.deleteOne({ name: { $in: ["Dennis Ritchie",

"Bjarne Stroustrup"] } })

Executing this statement, you will notice that, although two

documents match the criteria, only one document gets deleted.

OUTPUT:

Delete all documents:

To delete all documents from the programmers' collection, you

have to write the query like this:

Example:

db.programmers.remove({})

Output:

But, when the filtering is done for removing elements, the

db.collection.remove() method will document which matches the

specified criteria. Here, we delete all documents where the

artist name is "James Gosling".

Example:

db.programmers.remove({ name: "James Gosling" })

Output:

db.collection.deleteMany() Method:

MongoDB allows you to delete multiple documents using the

db.collection.deleteMany() method. This method deletes all your

documents whichever match its criteria mentioned in the

parameter. To check its implementation of

db.collection.deleteMany() method, you can use the method the

same way as done previously:

Example:

db.programmers.deleteMany({ name: { $in: ["Dennis Ritchie",

"Bjarne Stroustrup"] } })

Output:

In this way, continuing from the previous example implementation,

now all the records were also deleted, and the deleteMany()

method was used this time. Now, if you try to find the documents

using find() method, it won't show any result of your query or

search.

QUERY DOCUMENTS IN MONGODB:

 The find() method: This method is used for querying

data from a MongoDB collection.

The basic syntax for using this method is:

Syntax:

db.collection_name.find()

Example:

db.writers.find()

Various other options can be used to make the query

specific. It will be discussed below.

 The pretty() method: This method is used for giving a

proper format to the output extracted by the query.

The basic syntax for using this method is:

Syntax:

db.collection_name.find().pretty()

Example:

db.writers.find().pretty()

FILTERING CRITERIA OF MONGODB: It is also possible to filter

your results by giving or adding some specific criteria in which

you are interested to. For example, if you wish to see the Gaurav

Mandes data, you can add a specific attribute to the find() to

fetch the data of Gaurav Mandes from that particular database.

Example:

db.writers.find({ author: "Gaurav Mandes" })

Output:

MongoDB query which Specify “AND” Condition:

MongoDB also allows you in specifying data values of the

documents holding two or more specified values to be fetched from

the query. Here are two examples showing the use of specifying

queries using AND.

Example:

db.writers.find({ tools: "Visual Studio", born: 1948})

MongoDB Query Which Specify "OR" Condition:

MongoDB allows users to specify either one or multiple values to

be true. According to this, till one of the conditions is true,

the document data will get returned. Here is an example showing

the use of OR condition:

Example:

db.musicians.find({$or: [{ instrument: "Drums" }, { born: 1945 }

] })

Output:

$in operator

The $in operator is another special operator used in queries for

providing a list of values in the query. When your document holds

any of those provided values, it gets returned. Here is an

example:

Example:

db.musicians.find({ "instrument": { $in: ["Keyboards", "Bass"]

} })

Output:

